BLOCKCHAIN AND DISTRIBUTED LEDGER TECHNOLOGIES

Lecture 2 – Introduction to the Bitcoin Blockchain

Youngwhan "Nick" Lee DeLight Chain, Inc.

WORLD BANK GROUP

After this lecture students shall

know

- what Bitcoin is
- the historical importance and development
- about the protocol steps and special roles in Bitcoin
- the concepts of double spending detection and avoidance
- mining and consensus

• can describe

- a full way of a Bitcoin transaction
- evolution steps and major types of BC/DLT systems
- Can set up a full Bitcoin node and operate a transaction

"A purely **peer-to-peer** version **of electronic cash** would allow **online payments** to be sent **directly from one party** to another **without going through a financial institution**. **Digital signatures** provide part of the solution, but the main benefits are lost if a trusted third party is still required to **prevent double-spending**. [...]

The network timestamps transactions by hashing them into an ongoing chain of hash-based **proof-of-work**, forming a record that **cannot be changed** without redoing the proof-of-work.

The **longest chain** not only serves as proof of the sequence of events witnessed, but **proof that it came from the largest pool** of CPU power. As **long as a majority of CPU power is controlled** by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. [...]"

Source: Satoshi Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System, 2008

• identity

the Bitcoin address for every user

• privacy

anonymity of the identities in the Bitcoin network is given that only transactions are made public

• block building and consensus

the process of validate new blocks and adding them to the Bitcoin blockchain by using individual CPU time and electricity (to solve mathematical puzzles)

LEDGER

Record transactions in a ledger

- timestamp a document (= bring into an order with other documents) and to issue the "certificate" of it
- goal:
 - give the time of when a document came into existence
- By doing so, to accurately convey the order of creation of documents
 - required: a document's timestamp shouldn't be changed after the fact
 - The certificate of a document ensures the integrity of the contents of the previous document

TYPES OF NETWORK

Centralized Network

In a centralized network, individual clients request services and recources from centralized servers.

Three Kinds of Network

Decentralized Network

In a decentralized network, local servers offer services and resources for individual clients nearby.

In a distributed (or P2P) network, interconnected nodes ("peers") share resources each other without the use of a centralized administrative system.

DECENTRALIZATION IN BLOCKCHAIN

- Logical (de)centralization: Do the systems interface and data structure look like a single huge object or like an amorpous swarm? If both, providers and users of the system, cut in half, will both halfes be able to fully operate as independet units?
- **Political (de)centralization**: By how many individuals or organizations, that ultimately controll the computers, is the system made up of?
- Architectural (de)centralization: If the system is breaking down, how many physical computers can it tolerate at any single time? And of how many physical computers is the system made up at all?

- Politically decentralized no one controls them
- Architectural decentralized no infrastructural central point of failure
- Logically centralized one commonly agreed state; system behaving like a single computer

The system must prevent participants from any kind of cheating

- The assumption: it is a cyberspace that uncertain number of anonymous people do economic activities
- How can we store all the information and keep the integrity of the ledger of transactions?

Simple but smart answer: Let **everyone keep the ledger**. Hard part: Make sure everyone has the exactly the same ledger at any given time. DISTRIBUTED LEDGERS

THE BITCOIN NETWORK ROLES OVERVIEW

source: Mastering Bitcoin by Andreas M. Antonopoulos, O'Reilly (2015)

Nodes

NODES

- any computer (or enddevice) that connects to the Bitcoin network with a collection of services: routing, blockchain database, mining, and wallet
- validate, propagate transactions,

THE BITCOIN NETWORK ROLES

- discover and maintain connections to peers
- Full Nodes: storing the complete, up-to-date Bitcoin blockchain
- Light Nodes: storing only parts of the Bitcoin blockchain and perform simplified payment verification (SPV) only

THE BITCOIN NETWORK ROLES WALLET

- Wallets
 - a collection of private keys of an Bitcoin network address to manage those keys and make transactions and store transactions from and to this address
 - Light wallets do not carry a copy of the blockchain but perform simple payment verifications (SPV):
 - only downloads block-header, 1000 times smaller than transactions
 - search for block containing transactions and looking for the single transaction in Merkle tree
 - if block is older than 6 blocktimes, it counts as confirmed

Miners

Page 13

• Equation for difficulty:

 $difficulty = difficulty * \frac{two_{weeks}}{time \ to \ mine \ prev \ 2016 \ blocks}$ \rightarrow the faster miners become, the less time is needed per block,

• Equation for difficulty:

the higher the difficulty

Find a valid nonce (number used once) to create a valid block header with a defined number of leading zeroes (= difficulty) satisfying the following equation
 H(nonce||prev_{hash}||transaction||transaction|| ... ||transaction) < target

 Verify incoming transactions by checking signatures and confirming the existance of the valid bitcoins
 Find a valid nonce (number used once) to create a valid bitcoins

- Create blocks using collected valid transactions and solve puzzles as "Proof-of-Work" mechanism
- full node that uses CPU time to solve the proof-of-workpuzzle

WORLD BANK GROUP DeLight Chain

- PoW is computation intensive and consumes a lot of energy
- for motivation, the miners achieves incentive = Block reward + transaction fees Block reward currently is 12.5 BTC.
 - The block reward halfes every 210.000 blocks.
 - \rightarrow amount of total Bitcoin emitted is limited to 21.000.000
 - \rightarrow mining is the only way to (temporarily still) increase number of Bitcoins

Reward-Drop ETA date: 30 May 2020 09:16:12

The Bitcoin block mining reward halves every 210,000 blocks, the coin reward will decrease from 12.5 to 6.25 coins

Total Bitcoins in circulation:	16,971,96
Total Bitcoins to ever be produced:	21,000,00
Percentage of total Bitcoins mined:	80.829
Total Bitcoins left to mine:	4,028,03
Total Bitcoins left to mine until next blockhalf:	1,403,03
Bitcoin price (USD):	\$6,904.0
Market capitalization (USD):	\$117,174,429,100.
Bitcoins generated per day:	1,8
Bitcoin inflation rate per annum:	3.95

http://www.bitcoinblockhalf.

Definition: There are n nodes that each have an input value. Some of these nodes are faulty or malicious. A **distributed consensus protocol** has the following two properties:

- It must terminate with all honest nodes in agreement on the value
- The value must have been generated by an honest node

Broadcasting a transaction: In order to pay B, A broadcasts the transaction to the entire Bitcoin peer-to-peer network.

Distributed Network

The nodes in the system must agree on exactly

- which transactions were on broadcast and
- the order in which these transactions happened.

 \rightarrow This results a single, global ledger for the system.

Problems:

- Imperfections in the network, such as latency and node crashing
- Deliberate attempts by some nodes to disturb the process

- Logical (de)centralization: Do the systems interface and data structure look like a single huge object or like an amorpous swarm? If both, providers and users of the system, cut in half, will both halfes be able to fully operate as independet units?
- **Political (de)centralization**: By how many individuals or organizations, that ultimately controll the computers, is the system made up of?
- Architectural (de)centralization: If the system is breaking down, how many physical computers can it tolerate at any single time? And of how many physical computers is the system made up at all?

- Politically decentralized no one controls them
- Architectural decentralized no infrastructural central point of failure
- Logically centralized one commonly agreed state; system behaving like a single computer

THE BITCOIN NETWORK ROLES NODES

GLOBAL BITCOIN NODES

DISTRIBUTION

24-hour charts »

1

2

3

4

5

6

7

8

9

10

Youngwhan "Nick" Lee, Ph. D.

Germany

China

France

Canada

n/a

Singapore

https://bitnodes.earn.com/

MINING POOLS

Pros

- Allows individual miners to participate
- Easy to upgrade software changes

Cons

- Pool manager must be trusted
- Centralized
- Enables a multitude of attacks

THE BITCOIN NETWORK ROLES MINERS

REAL WORLD MINING (4/4)

Quick facts

- Today's network hashrate: 7,257,882 TH/s
- Mining Reward / yr = (1 yr / 10 mins) * 12.5 = 657k BTC / yr
- Assume constant price of \$4000

Suppose you want to start mining today.

• Antminer S9: Costs \$3000, 14 TH/s

% of network hashrate = (14 TH/s) / (7,257,882 TH/s)
= 0.000192893%

Expected Annual Reward

• 0.000192893% * 657k /yr ≈ 1.27 BTC / yr ≈ \$5080/yr

Solo mining

- 1 block mined per 571853 blocks
- \Rightarrow 12.5 BTC every 3972 days
- \Rightarrow \$50000 once every 10.9 years

Mining with mining pool

- Assume pool has ¼ network hashrate
 Pool finds every 6th block ≈ 1 per hour
- \$5080 / 8760 hrs/yr
 ≈ \$0.58 every hour

Paradox:

• The more secure Bitcoin gets, the greater the appeal for mining pools

- Identity pairs
 - Email: address and passwords
 - House: address and keys
 - Bitcoins: public key and private key

• Identity pairs in the context of currencies

- public key for receiving money
- private key for redeeming money

Key Management:

Normal practice is to generate new keys for every transaction you make Why?

- Privacy
 - Someone shouldn't be able to determine how much bitcoin you own
- Easier to tell who sent you a transaction

Wallet software will do legwork of combining funds from different keys

IDENTITY

IDENTITY SECURITY

"What if someone guesses my private key?!"

- Bitcoin is hidden in the large amount of public keys
- 2¹⁶⁰

(1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,97) possible addresses

- Practically impossible for anyone to overlap
 - For reference:
 - Grains of sand on earth: 2⁶³
 - With 2⁶³ earths, each with 2⁶³ grains of sand: 2¹²⁶ total grains of sand
 - 2¹²⁶ is only 0.000000058% of 2¹⁶⁰
 - Population of world: 7.5 billion in April 2017
 - Every person could have about 2¹²⁷ addresses all to themselves

A transaction must be valid, if all the conditions below are satisfied:

- signature
- funds available
- no other transactions using the same fund

Unspent transaction output (UTXO) model

• to ensure the funds are used only once

TRANSACTIONS (1/2)

TRANSACTIONS (2/2)

	version	01 00 00 00
	input count	01
	previous output hash (reversed)	jd 23 i7 jr 85 e9 2m 19
Input	previous output index	00 00 00 00
	script length	
	scriptSig	script containing signature
	sequence	ffffff
_	output count	01
	value	A5 00 00 00 00 00
Output	script length	
	scriptPubKey	script containing destination address
	block lock time	00 00 00 00

TRANSACTION: UTXO

- Instead of keeping all your cash in one chest, each received payment goes into a new piggy bank
- Every time you need to make a transaction, you break one or more piggy banks
- All bitcoins have a "serial number", the reference number when using UTXOs as inputs for other transactions.

Sybil attack

A malicious adversary creates just copies of nodes, all controlled by the same party
 → Bitcoin's Solution: Implicit consensus (by randomness) for a block creation

Denial of service attack

• A denies transactions from B's address

51% attack

Bitcoin's solution \rightarrow PoW (Bitcoin assumes an honest majority)

POTENTIAL ATTACKS (2/2)

Double-spending attack

- Alice creates two transactions: one to Bob, the other to herself
- Bitcoin's solution → make sure to wait for *n* confirmation.
 - **Confirmation:** The number of blocks created on top of the block a txn is in.

```
confirmations = block_{depth} - 1
```


